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On the influence of coherent structures upon
interscale interactions in turbulent plane jets
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The influence of the coherent structures on grid/subgrid-scale (GS/SGS) interactions
in free shear layers is analysed through the application of a top-hat filter to several
plane jet direct numerical simulations (DNS). The Reynolds number based on the
plane jet inlet slot width is Reh = 3000. The study deals with energy containing
(Kelvin–Helmholtz) and inertial range (streamwise) vortices, from the far field of
the turbulent plane jet. The most intense kinetic energy exchanges between GS and
SGS occur near these structures and not randomly in the space. The GS kinetic
energy is dominated by GS advection and GS pressure/velocity interactions which
appear located next to the Kelvin–Helmholtz rollers. Surprisingly, GS/SGS transfer
is not very well correlated with the coherent vortices and GS/SGS diffusion plays
an important role in the local dynamics of both GS and SGS kinetic energy. The
so-called ‘local equilibrium assumption’ holds globally but not locally as most viscous
dissipation of SGS kinetic energy takes place within the vortex cores whereas forward
and backward GS/SGS transfer occurs at quite different locations. Finally, it was
shown that SGS kinetic energy advection may be locally large as compared to the
other terms of the SGS kinetic energy transport equation.

1. Introduction
The relation and interplay between large and small scales has long been one of

the key problems of turbulence, and one that has received a considerable amount
of attention since Kolmogorov’s pioneering work (Kolmogorov 1941). Implicit in
Kolmogorov’s ‘small scales universality’ hypothesis, is the idea of a certain degree of
large/small scales independence at sufficiently high Reynolds numbers. These ideas
have become one of the building blocks of turbulence theory and have been used ever
since, either to understand or model turbulent flows. However, in the last two decades,
several theoretical, experimental and numerical studies have shown that large and
small turbulent scales do not always behave independently, even in high-Reynolds-
number flows. This is a key issue for the large-eddy simulation (LES) approach which
depends heavily on a correct representation of large/small scale relationships. Indeed,
in LES only the grid scales (GS) of motion are explicitly calculated and, since the
subgrid-scales (SGS) are not computed, their effect on the resolved scales has to be
adequately modelled through a proper SGS model. The reader is referred to the review
articles by Lesieur & Métais (1996) and Meneveau & Katz (2000) for the recent SGS
model developments and improvements. As frequently pointed out (see e.g. Piomelli &
Chasnov 1996), the most important aspect the SGS model must represent accurately
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is the kinetic energy exchange between the resolved and unresolved scales. Although
in the mean, the energy is predominantly transferred from GS to SGS (forward
scatter), energy may also flow locally from SGS to GS (backward scatter). In some
flow regions such as the buffer region in near wall flows or in the initial stages of
transitional flows, backscatter can be more important than forward scatter (Piomelli
et al. 1991; Piomelli, Yu & Adrian 1996; Hartel & Kleiser 1998). In this context,
several works have been devoted to the study of large/small scale interactions and
energy transfers (see e.g. Domaradzki & Rogallo 1990; Domaradzki, Liu & Brachet
1993; Domaradzki et al. 1994; Kerr, Domaradzki & Barbier 1996).

Another aspect that is beginning to receive increased attention is the effect and
relation of coherent structures on GS/SGS interactions. Coherent structures arise
naturally in many turbulent flows and it has been argued for a long time that they
govern most of the energy of the turbulent flow and are responsible for most of
the transfers of mass and momentum, whence their key role in turbulence. Much
work concerning coherent structures and local turbulence dynamics was carried out
by Hussain (1983, 1986) but only recently have the first studies on the role of co-
herent structures in GS/SGS interactions appeared. Piomelli et al. (1996) analysed
the correlation of typical events from wall flows (sweeps and ejections) and GS/SGS
transfer. For instance, in the buffer layer, forward scatter is associated with ejections,
backward scatter with sweeps. Since upward and downward fluid motions are con-
nected with streamwise vortices existing in the buffer layer, a strong correlation exists
between these coherent structures and regions of positive/negative GS/SGS transfer.
Regions of forward transfer are located in the upwash side of a streamwise vortex leg,
backward transfer appears in the downwash region. Lin (1999) used LES to analyse
the same phenomena in a planetary convective boundary layer, arriving at similar
conclusions. Jiménez (1999) explained how the presence of vortices of different sizes
at different wall locations, could promote a mechanism of backward energy cascade.
In a series of articles, Horiuti (1995, 1996, 1997) studied in great detail the phenomena
of spatial correlation between forward/backward scatter and coherent vortices in a
mixing layer. He observed that the ‘SGS production’, taking place in the streamwise
vortices, is positive (forward cascade) in the regions corresponding to the first and
third quadrants of the rib vortices and negative (backward cascade) in the second
and fourth quadrants. This was explained by the particular field of deformation rate
caused by these streamwise structures. Horiuti (2000) analysed the types of vorti-
cal structure which are mostly responsible for the forward and backward cascade,
in homogeneous isotropic turbulence. He saw that forward scatter primarily occurs
along the flat sheet region, similar to the Burgers vortex layer, whereas the backward
cascade mainly arises in the vortex tube core regions. Using turbulent wake labo-
ratory experiments, O’Neil & Meneveau (1997) observed a strong influence between
the von Kármán-street vortices and the so-called ‘surrogate’ (τ11S

<
11) subgrid-scale

dissipation. The higher values of this quantity always appear ahead of the big rollers.
The results of this study put in question the hypothesis of small scales universality,
since the observed strong correlation between large and much smaller scales implies
the existence of some level of anisotropy at small scales. This point was previously
suggested by Piomelli, Coleman & Kim (1997) and Liu, Katz & Meneveau (1999)
who studied the evolution of the subgrid-scales in non equilibrium turbulent flows.
They showed that although it is true that subgrid-scales are more isotropic and adjust
more rapidly from non-equilibrium situations than the large scales (Piomelli et al.
1997), they can be highly anisotropic and require a finite time to adjust themselves
from external (large scale) effects. Recently, some attention was given to the influence
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of SGS models on computed coherent structures. Silvestrini (1996) compared the co-
herent structures computed from a DNS of a mixing layer with those resulting from
several SGS models. Vreman, Geurts & Kuerten (1997) observed that LES, made
with different SGS models lead to differences in the vortical structures of a mixing
layer. In a temporal plane jet DNS, Akhavan et al. (2000) noticed that different SGS
models result in a different spatial structure of the subgrid-scale dissipation. They
also observed intense regions of forward and backward transfer at the periphery of
the flow vortical structures. Finally, Horiuti (1997, 2000) compared the topological
performance of several SGS models in the streamwise vortices from a mixing layer
and in the vortical structures from homogeneous isotropic turbulence (worms).

The present study is focused on understanding the effect of coherent structures
upon GS/SGS interactions. For that purpose, three plane jet DNSs were carried out
in which a box or top-hat filter was used to separate GS and SGS. Each term of the
transport equations for the GS and SGS kinetic energy was analysed both statistically
and topologically, in relation to the flow coherent structures. The several tools used in
this study run from one-point statistics, including correlation coefficients, probability
and joint probability density functions, to visualization of the instantaneous fields.
In the end, new light is cast on how GS and SGS interact and what is the role
played in it by the flow coherent vortices. Notice that the work is restricted to a
local (in the physical space) analysis, since local interactions account for most of
the GS/SGS transfers (Domaradzki & Rogallo 1990; Domaradzki et al. 1993, 1994).
Moreover, this analysis is focused on relatively big coherent vortices, caused by a
strong mean velocity field inhomogeneity and which are therefore quite different from
the structures (worms) found in homogeneous isotropic turbulence.

Plane jets were chosen for the present study because they exhibit typical and well-
documented events such as the development of Kelvin–Helmholtz vortices, streamwise
or longitudinal vortex pairs, and vortex pairing/merging events. Since this kind of
structure is not ubiquitous to plane jets, the conclusions from the present work can be
extended to a large class of free shear flows. Recently, some well-resolved numerical
simulations dealing with plane jets have been performed. Stanley, Sarkar & Mellado
(2002) studied the mixing of a passive scalar in a direct numerical simulation of a
spatially evolving plane jet. Le Ribault, Sarkar & Stanley (1999) made large-eddy
simulations in order to assess (a posteriori) the performance of several turbulence
models. Finally, Akhavan et al. (2000) used direct and large-eddy simulations of
temporally evolving plane jets to analyse GS/SGS interactions in the physical and
spectral space. Their study led them to the design of a new SGS model.

The organization of the paper is as follows. In the next section, the formalism of
the LES and the transport equations for both the GS and SGS kinetic energy are
recalled. In §3, the numerical method, physical and computational parameters of the
DNS are detailed. In §4, the present DNS is thoroughly validated by comparisons with
previous experimental data and numerical simulations. Section 5 uses the far-field
region of the present DNS to analyse in detail how the presence of strong coherent
vortices affects both the statistical and local GS/SGS interactions.

2. Problem formulation
2.1. Governing equations

2.1.1. Filtered Navier–Stokes equations

In LES, all the existing scales of motion are decomposed into a grid scale (f<)
and a subgrid-scale part (f>) through a spatial filtering operator applied to the
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Navier–Stokes (NS) equations. The filtering operator is defined by

f<(x) =

∫
Ω

f(x′)G∆(x− x′) dx, (2.1)

where G∆(x) is a filter of width ∆, f(x) represents any flow variable and the integration
is carried out over the whole flow domain, Ω. Therefore, the velocity and pressure
fields can be decomposed as

ui = u<i + u>i , p = p< + p>, (2.2)

respectively.

It is important to realize that the filter function has to verify,∫
Ω

G∆(x) dx = 1, (2.3)

in the analytical and computational (discrete) sense. The resulting filtered Navier–
Stokes equations are then,

Du<i
Dt

=
∂u<i
∂t

+
∂u<i u

<
j

∂xj
= −∂p

<

∂xi
+ ν

∂

∂xj

(
∂u<i
∂xj

+
∂u<j

∂xi

)
− ∂τij

∂xj
, (2.4)

∂u<i
∂xi

= 0. (2.5)

Here, p< means p</ρ for convenience. τij is the unknown subgrid-stress tensor
responsible for the momentum exchanges between the subgrid and the filtered scales
and which has to be modelled:

τij = (uiuj)
< − u<i u<j . (2.6)

Throughout this paper, angle brackets, 〈 〉, will be used to designate mean quan-
tities whereas fluctuating quantities will be marked with a prime. With this notation,
any instantaneous variable v can be Reynolds decomposed as v = 〈v〉 + v′. De-
tails about the sample data sets and averaging procedures will be given in each
section.

2.1.2. Transport equations for the grid-scale and subgrid-scale kinetic energy

A first step to understanding the interaction between grid scales (GS) and subgrid-
scales (SGS) consists of writing out the transport equations for (twice) the total GS
and SGS kinetic energy. This was previously done by Piomelli & Chasnov (1996),
Piomelli et al. (1991, 1996).

The transport equation for (twice) the GS kinetic energy, u<i u
<
i , is given by,

∂u<i u
<
i

∂t︸ ︷︷ ︸
I

+
∂u<i u

<
i u

<
k

∂xk︸ ︷︷ ︸
II

= −2
∂

∂xk
(p<u<k )︸ ︷︷ ︸
III

+
∂

∂xk
(ν

∂

∂xk
(u<i u

<
i ))︸ ︷︷ ︸

IV

−2 ν
∂u<i
∂xk

∂u<i
∂xk︸ ︷︷ ︸

V

−2
∂

∂xk
(τiku

<
i )︸ ︷︷ ︸

VI

+2 τikS
<
ik︸ ︷︷ ︸

VII

, (2.7)
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and the transport equation for the SGS kinetic energy, τii is,

∂τii

∂t︸︷︷︸
VIII

+
∂(τiiu

<
k )

∂xk︸ ︷︷ ︸
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=
∂

∂xk

(
(uiui)

<u<k − (uiuiuk)
<
)

︸ ︷︷ ︸
X

+2
∂
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(
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<
)
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∂
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∂
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−2ν
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∂ui

∂xk
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i )︸ ︷︷ ︸

XIV

−2 τikS
<
ik︸ ︷︷ ︸
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, (2.8)

here, S<ij = 1
2
((∂u<i /∂xj) + (∂u<j /∂xi)) is the GS deformation tensor. It is important

to recall the physical meaning of these equations. In (2.7), terms I and II account
for the total (local and convective) variation of GS kinetic energy. Terms III and IV
account for the redistribution (diffusion) of GS kinetic energy by pressure/velocity
interactions and molecular viscosity, respectively. Term V is the local GS kinetic
energy dissipation due to the molecular viscosity. The terms VI and VII are the only
terms involving the subgrid-stress tensor τij and are directly related to the kinetic
energy exchanges between GS and SGS. Term VI (GS/SGS diffusion) represents a
redistribution of GS kinetic energy by interactions between the GS velocity and the
SGS stresses. The GS/SGS transfer (term VII),

T<
sgs = 2τikS

<
ik , (2.9)

also called subgrid-scale dissipation, is thought to be the dominating term in the
equation. It represents the transfer of kinetic energy between GS and SGS. If Tsgs < 0,
the term is a sink for the GS kinetic energy as energy flows from GS to SGS (forward
scatter). If Tsgs > 0, term VII is a source and the kinetic energy flows from SGS to
GS (backward scatter).

In (2.8), terms VIII and IX represent the local and convective variation of the SGS
kinetic energy, respectively. The diffusion caused by the local turbulence level on the
SGS kinetic energy is represented by term X (SGS turbulent transport). Term XI is
the SGS pressure/velocity interactions and XII is the SGS viscous diffusion. Term
XIII (SGS viscous dissipation) represents the end of the energy cascade process where
molecular viscosity finally dissipates the remaining SGS kinetic energy.

It is important to notice that the terms XIV and XV are, respectively, the opposites
of the terms VI and VII. Since these terms appear in both equations with opposite
signs, they represent the kinetic energy exchange between GS and SGS. As stressed
above, the terms VI and VII involve the subgrid-scale stress tensor and an inaccurate
modelling of these two terms will yield an incorrect representation of the energetic
exchanges between GS and SGS.

3. Numerical method and DNS parameters
3.1. Spatial and temporal discretization

The code used here is a highly accurate spectral/compact finite-difference incom-
pressible Navier–Stokes solver. The discretization of the spatial derivatives was done
using a sixth-order-compact scheme (Lele 1992) in the streamwise (x) direction and
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pseudospectral methods (Canuto et al. 1987) for the normal (y) and spanwise (z)
directions.

The time advancement uses an explicit three-step third-order low-storage Runge–
Kutta time-stepping scheme (Williamson 1980). Pressure velocity coupling is solved
with a fractional step method (Kim & Moin 1985; Le & Moin 1991) that ensures
incompressibility at each substep of the Runge–Kutta time-advancing scheme.

3.2. Boundary conditions

Since we are here dealing with spatially growing flows, special care has to be taken of
the inflow and outflow boundary conditions (streamwise, x-direction). In particular,
we must be sure that the coherent structures exit the computational domain properly
without being affected by the outflow boundary condition. For this purpose, the
code uses a non-reflective (Orlansky 1976) outflow condition in which not only the
convective but also the viscous terms of the Navier–Stokes equations are explicitly
advanced (Gonze 1993). It was previously checked by Comte, Silvestrini & Begou
(1998) in DNS and LES of spatially growing mixing layers that the coherent structures
leave the computational domain without being distorted. The boundaries in the
normal (y) direction were taken as periodic. Such boundary conditions, which permit
the use of very accurate pseudospectral schemes, do not allow entrainment from the
flow situated outside the computational domain. However, it has been clearly shown by
Stanley, Sarkar & Mellado (2002) and Stanley & Sarkar (2000) that the imposition
of a small co-flow allows us to obtain a very good statistical concordance with
experimental measurements as long as the lateral boundary conditions of the jet are
placed sufficiently far away. As subsequently demonstrated, our results are carefully
validated by comparing with experimental measurements (Gutmark & Wygnansky
1976; Browne et al. 1983; Ramprian & Chandrasekhara 1985; Thomas & Chu 1989;
Thomas & Prakash 1991), and other DNS (Le Ribault et al. 1999; Stanley & Sarkar
2000; Stanley et al. 2002). Finally, the spanwise (z) direction was treated as periodic.

3.3. Inflow conditions

A velocity profile is prescribed at the inlet at each time step. The mean inlet velocity
is based in a hyperbolic tangent profile (Le Ribault et al. 1999; Stanley et al. 2002),

U =
U1 +U2

2
+
U1 −U2

2
tanh

(
h

2θ0

ysl

h

)
. (3.1)

Here, U1 is the jet centreline velocity and U2 is a small co-flow. The mean V and W
velocities in the y- and z-directions were set to zero at the inlet. θ0 is the momentum
thickness of the initial shear layer, h is the jet’s inlet slot width, and ysl is the distance
from the centre of the shear layer. Notice that (3.1) has to be mirrored about the plane
(x, z) in order to obtain the desired jet top-hat profile. The inlet profile expressed in
a reference frame placed at the centre of the jet (y = 0) is then given by,

U(x = 0, y, z) =
U1 +U2

2
+
U1 −U2

2
tanh

[
h

4θ0

(
1− 2|y|

h

)]
. (3.2)

A three-component (u, v and w) fluctuating velocity field was superimposed on
the mean velocity profile. This numerical noise was designed to exhibit the statisti-
cal characteristics of isotropic turbulence. Each velocity component of the noise is
prescribed in such a way that its energy spectrum is given by

E(k) ∝ ks exp[− 1
2
s(k/k0)

2] (3.3)
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where k = (k2
y + k2

z )
1/2 is the wavenumber norm in the (y, z)-plane and the exponent s

and the peak wavenumber k0 were chosen to give an energy input dominant at small
scales (high k0) and an energy content typical of freely decaying turbulence (s 6 4).
The noise was only imposed within the shear-layer region of the mean profile through
a proper convolution function.

3.4. Computational parameters of the DNS

In this work, we will be interested mainly in analysing grid/subgrid-scale interactions
in a fully developed turbulent configuration. For this purpose, we used the same
strategy as Stanley & Sarkar (2000) and Stanley et al. (2002) which consists of
applying a relatively high-amplitude inlet noise in order to force the flow to reach
the self-similar state quickly (earlier than in other numerical simulations carried out
at the same Reynolds number). This in turn allows the validation of the present
simulations through comparisons with experimental data taken from the self-similar
regime at higher Reynolds numbers. The influence of the inlet noise amplitude in
direct numerical simulations of spatially developing plane jets was investigated by
Stanley & Sarkar (2000). They concluded that ‘the influence of the forcing is rapidly
lost downstream’ and the effects of applying a high-amplitude noise (10%) are only
felt in the near field (x/h < 4) and do not influence the jet dynamics in the self-similar
region. To show that our main results are independent of the inlet noise we vary its
level by considering both 5% and 10% noise amplitudes.

Three DNSs of plane jets are carried out here. In the first simulation (DNS0) the
initial shear-layer momentum thickness θ0 non-dimensionalized by the inlet slot width
h was set to h/θ0 = 30 and the maximum intensity of the inlet velocity fluctuations is
5% of the maximum inlet velocity, U1. The second simulation (DNS1) uses the same
parameters as Stanley et al. (2002) in which h/θ0 = 20 and the magnitude of the inlet
velocity fluctuations is set to 10%U1. Finally, the third simulation (DNS2) uses the
same noise intensity as in DNS1 but the ratio h/θ0 is raised to 30 as in DNS0. As will
be shown below, all simulations have a quick transition to turbulence and reach the
self-similar state before the end of the computational domain. The Reynolds number
was Reh = ∆Uh/ν = 3000 for all three simulations, where ∆U = U1 − U2 are the
maximum and minimum (co-flow) jet velocities which were set to U1 = 1.091 and
U2 = 0.091, respectively. Our co-flow has a similar magnitude (U2/U1 ≈ 0.08) as that
used by Le Ribault et al. (1999), Stanley & Sarkar (2000) and Stanley et al. (2002).
In these previous studies, it was demonstrated that such a small co-flow has only a
minor influence on the jet dynamics. The same is true in the present case, as will be
shown below.

Table 1 summarizes the computational parameters for the three simulations. The
total number of grid points is equal to about 6.7 (DNS0, DNS1) and 7.4 (DNS2)
million. Notice that the grid is uniform in the three spatial directions with ∆x = ∆y =
∆z = 0.04h.

3.5. Filtering procedure

This work is aimed at the study of the local interactions between large and small
scales, thus only a spatially localized filter can be used (Liu, Meneveau & Katz 1994).
Here, we use a box or top-hat filter defined as

G∆(x− ξ) =

{
1/∆ if |x− ξ| < 1

2
∆

0 otherwise.
.
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Simulation h/θ Noise (n1× n2× n3) (Lx × Ly × Lz) Resolution
(%)

DNS0 30 5 (310× 300× 72) (12.4h× 12h× 2.9h) ∆xi = 0.04h
DNS1 20 10 (310× 300× 72) (12.4h× 12h× 2.9h) ∆xi = 0.04h
DNS2 30 10 (310× 300× 80) (12.4h× 12h× 3.2h) ∆xi = 0.04h

Table 1. Summary of the physical and computational parameters for the three DNS, used in this
work. Notice that the grid is uniform in the three spatial directions and ∆xi = ∆x = ∆y = ∆z. n1, n2
and n3 are the number of grid points in the x (streamwise), y (normal) and z (spanwise) directions,
respectively, and Lx, Ly and Lz the dimensions of the computational domain along the three space
directions.

As pointed out by Meneveau & Katz (2000), using such a filter, in the subgrid-scales
kinetic energy, there is a dominant contribution from the small scales, but also a
smaller contribution from the grid scales, and vice versa for the grid-scale kinetic
energy. However, we use a box filter because it corresponds to the filter implicitly
associated with the discretization in a centred second-order finite difference (Rogallo
& Moin 1984) or finite volume (Schumann 1975) code, which is often used in large-
eddy simulations. Furthermore, we have checked that the use of a Gaussian filter leads
to similar results. To analyse the influence of the filter width, we use two different
box filters with ∆1 = 3∆x and ∆2 = 5∆x.

4. DNS assessment
4.1. Coherent structures

In this subsection, our DNS results will be used to validate the code in the plane jet
configuration. As stressed before, all three simulated flows reach the self-similar state,
which makes possible the comparison of the present results with several experimental
measurements, usually carried out at much higher Reynolds numbers.

An idea of the general three-dimensional organization of the three plane jet DNSs
can be gained from figure 1. The figure shows top-view isosurfaces of positive Q
criteria (Hunt, Wray & Moin 1988), which is the second invariant of the velocity
gradient tensor, Q = (1/2)(ΩijΩij − SijSij) where Ω and S are its symmetric and
anti-symmetric parts, respectively. The positive Q has proved to be a good criterion
to identify coherent vortices in various wall-bounded and free-shear flows (Dubief &
Delcayre 2000). Side-view isosurfaces of high vorticity modulus for simulation DNS2
are shown in figure 2. DNS0 and DNS1 show similar trends.

The vorticity isosurfaces showed that for the three DNSs, the flow appears to be
smooth in the early stages of transition until the appearance of the first pair of
Kelvin–Helmholtz vortices, both at the upper and lower shear layers. They appear
at x/h ≈ 3.2, x/h ≈ 3.5 and x/h ≈ 3 for simulations DNS0, DNS1 and DNS2,
respectively. Comparing simulations DNS0 (5% noise, h/θ0 = 30) and DNS2 (10%
noise, h/θ0 = 30), we see that the transition in DNS2 is quicker owing to its higher
values of inlet noise. Similarly, comparing DNS1 (10% noise, h/θ0 = 20) and DNS2
(10% noise, h/θ0 = 30), we see that the smaller initial momentum thickness in DNS2
accelerates its transition stage. Thus, an increase of either the ratio h/θ0 or the
inlet noise, causes a faster transition to turbulence. This agrees with the findings of
Stanley & Sarkar (2000) who analysed the effect of the initial values of h/θ0 and of
the amplitude noise in several DNSs of plane jets. However, the coherent structures
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Figure 1. Top view of positive Q criteria for the three DNSs: (a) DNS0; (b) DNS1; (c) DNS2.
In all three cases the threshold chosen is 4.0(U1/h)

2 and Q varies between Qmin = −484(U1/h)
2

and Qmax = +1082(U1/h)
2 for DNS0, Qmin = −399(U1/h)

2 and Qmax = +968(U1/h)
2 for DNS1 and

Qmin = −856(U1/h)
2 and Qmax = +1189(U1/h)

2 for DNS2.

found in the three cases remain similar, as can be checked in figure 1. As shown in
figure 2, in agreement with Thomas & Goldschmidt (1986), for a near top-hat plane-
jet initial-velocity profile, the upper and lower primary Kelvin–Helmholtz vortices
appear symmetrically arranged with respect to the centreline (x, z)-plane showing the
preferential amplification of the varicose mode. As did Thomas & Goldschmidt (1986),
we notice an asymmetrical arrangement of the jet further downstream owing to the
subsequent growth of a sinuous mode. The isosurfaces of the positive Q criterion (see
figure 1) show that these initial Kelvin–Helmholtz vortices are significantly distorted
along the spanwise direction. Further downstream, intense streamwise vortex pairs are
seen to emerge and to connect each two consecutive Kelvin–Helmholtz billows. Most
of the vorticity modulus is concentrated in these secondary structures, which start to
be visible, through isosurfaces of vorticity modulus, when the threshold reaches about
44% of its maximum value.

To give a greater insight into the coherent structures present in the far-field region
of the plane jet, figures 3 and 4 show details of the region 5.5 < x/h < 12.4 for
DNS1 and DNS2, respectivley. For clarity, only the upper shear layer (y/h > 0) is
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y
h

Figure 2. Side view of the vorticity modulus Ω, for DNS2. The threshold chosen is 6.23(U1/h) and
Ω varies between Ωmin = 0(U1/h) and Ωmax = +72.63(U1/h). Notice that the full extent of the lateral
domain is 12h while these figures show only the region −3 < y/h < +3.

shown. Pressure isosurfaces for simulations DNS1 and DNS2 are shown in figures
3(a) and 4(a), whereas isosurfaces of the positive Q criterion are shown in figures 3(b)
and 4(b), respectively. For DNS1, two large Kelvin–Helmholtz vortices situated
around x/h ≈ 6.2 and x/h ≈ 8.5 are clearly identified through the low-pressure
isosurfaces (figure 3a). The vortex-identification criterion based upon Q involves
much more small-scale activity than that based on the pressure as it is clear that
the isobaric surfaces are fatter than the Q isosurfaces. Note that only the most
intense vortices, either spanwise or streamwise, are visible through the pressure and
that the Q criteria not only displays these intense structures but also provides a
much more detailed view of the other small-scale structures. In particular, it can
be seen that intense small-scale activity takes place within the core of the large
Kelvin–Helmholtz vortices in the regions where the streamwise vortices connect
with the latter (see figure 3b). Compared to DNS1, we can see that in DNS2 the
coherent structures are now much more distorted and fragmented (see figure 4).
However, we can still observe the presence of strong Kelvin–Helmholtz billows. One
such roller is present at x/h ≈ 6.75 (see figure 4a). In DNS2, the smaller coherent
vortices never show clearly in the pressure isosurfaces owing to the high level of
background turbulence. They are more easily evidenced using isosurfaces of the
positive Q criterion (see figure 4b). In this simulation, for x/h & 6, we observe that
the coherent vortices have lost almost any preferential spatial orientation. This may be
a sign of a locally isotropic turbulent state (see below). DNS0 (not shown) exhibited
similar features.

4.2. Statistics

This section analyses one-point statistics from simulations DNS0/DNS1/DNS2 in
order to validate the code in the plane-jet configuration. All the statistics shown in
this section were calculated by accumulating data over 6000/7500/8000 run iterations
(instantaneous fields) and along the spanwise direction (72/72/80 points). The total
elapsed time allows for more than 28/35/38 Kelvin–Helmholtz vortices to leave the
computational domain both at the upper and lower shear layers.
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Figure 3. (a) Top-view isosurfaces of low pressure p in the upper shear layer (y/h > 0) for
simulation DNS1. The threshold chosen is −0.13ρU2

1 and p varies between pMin = −0.6ρU2
1 and

pmax = 0.27ρU2
1 ; (b) Top-view isosurfaces of positive Q in the upper shear layer (y/h > 0) for

simulation DNS1. The threshold chosen is +14.23(U1/h)
2 and Q varies between Qmin = −399(U1/h)

2

and Qmax = +968(U1/h)
2. Both pictures show a subdomain of the simulation from x/h = 5.5 to

x/h = 12.4 and the spanwise dimension is the total spanwise domain length, Lz = 2.9h. Both figures
report the same instant which also corresponds to the instant of figure 1.

Figure 5(a) displays the streamwise evolution of the jet half-width, defined as the
distance δU(x) for which,

〈u(x, y = δU(x))〉 −U2L = 0.5(UC −U2L). (4.1)

UC = 〈u(x, y = 0)〉 is the centreline mean velocity, U2L = 〈u(x, y = ∞)〉 is the
local co-flow velocity. At the inlet U2L = U2, where U2 is the inlet co-flow velocity
from (3.2). The centreline mean streamwise velocity is shown in figure 5(b). These
results are compared with the DNS of Stanley et al. (2002) (same Reynolds number)
and with the measured values from Browne et al. (1983) and Thomas & Chu (1989)
(higher Reynolds numbers).

In the self-similar regime, plane jets obey the following linear relationships (Gut-
mark & Wygnansky 1976; Ramprian & Chandrasekhara 1985; Thomas & Chu
1989):

δU

h
= Ku1

[x
h

+Ku2

]
, (4.2)[

U1 −U2

UC −U2

]2

= Cu1

[x
h

+ Cu2

]
. (4.3)
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Figure 4. (a) Top-view isosurfaces of pressure p in the upper shear layer (y/h > 0) for sim-
ulation DNS2. The threshold chosen is −0.12ρU2

1 and p varies between pmin = −0.57ρU2
1 and

pmax = 0.16ρU2
1 ; (b) Top-view isosurfaces of positive Q in the upper shear layer (y/h > 0) for sim-

ulation DNS2. The threshold chosen is +31.77(U1/h)
2 and Q varies between Qmin = −856(U1/h)

2

and Qmax = +1189(U1/h)
2. Both pictures show a subdomain of the simulation from x/h = 5.5 to

x/h = 12.4 and the spanwise dimension is the total spanwise domain length, Lz = 3.2h. Both figures
report the same instant which also corresponds to the instant of figure 1.

Figure 5 shows also the straight lines for the self-similar region, corresponding (4.2)
and (4.3) for all three simulations. The corresponding growth rates and centreline
velocity decay coefficients are given in table 2 with the values obtained from several
numerical and experimental studies.

These graphs show that all three simulations DNS0, DNS1 and DNS2 exhibit
a linear evolution typical of the self-similar regime. As expected, and in agreement
with the numerical simulations of Stanley & Sarkar (2000), the self-similar regime is
attained earlier in DNS2 (x/h > 7) than in DNS1 (x/h > 9) or DNS0 (x/h > 7.5)
owing to its higher initial noise and h/θ0. Moreover, in the three simulations the slope
of the half-width and centreline velocity decay agree very well with the available
experimental and numerical data (see table 2 and also the decay coefficients found
by Stanley & Sarkar 2000). We note, however, that the self-similar regime is attained
faster in the experimental data, which correspond to higher Reynolds numbers, and
in the numerical simulations of Stanley et al. (2002), at the same Reynolds number.
It is well established that the plane jet is very sensitive to the inlet conditions (see
e.g. Thomas & Chu 1989). Consequently, in the initial stages of transition, a perfect
match for both the half-width growth and for the potential core length is very
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Source K1u K2u C1u C2u

DNS0 results 0.089 +2.10 0.165 −0.85
DNS1 results 0.108 −2.10 0.20 −2.75
DNS2 results 0.089 +0.80 0.165 −0.25
DNS Stanley et al. (2002) 0.092 +2.62 0.201 +1.23
Ramparian & Chandrasekhara (1985) 0.110 −1.00 0.093 −1.60
Browne et al. (1983) 0.104 −5.00 0.143 −9.00
Thomas & Prakash (1991) 0.110 +0.14 0.220 −1.20
Thomas & Chu (1989) 0.110 +0.14 0.220 −1.19
Gutmark & Wygnansky (1976) 0.100 −2.00 0.189 −4.72
Hussain & Clark (1977) 0.118 +2.15 0.123 +4.47

Table 2. Growth rates and centreline velocity decay coefficients for the present simulations (DNS0,
DNS1 and DNS2) and values obtained from other numerical simulations (Stanley et al. 2002) and
experimental measurements (Gutmark & Wygnansky 1976; Hussain & Clark 1977; Browne et al.
1983; Ramprian & Chandrasekhara 1985; Thomas & Chu 1989; Thomas & Prakash 1991).
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Figure 5. (a) Downstream evolution of the half-width for several plane jets; (b) Downstream
evolution of the centreline velocity decay for several plane jets. The results from simulations DNS0,
DNS1 and DNS2 are compared with the experimental data from 4, Browne et al. (1983) and �,
Thomas & Chu (1989), as well as the DNS from ×, Stanley et al. (2002). (a) Equation (4.2) has
K1u = 0.089 and K2u = +2.10 for DNS0, K1u = 0.108 and K2u = −2.10 for DNS1, and K1u = 0.089
and K2u = +0.80 for DNS2. (b) Equation (4.3) has C1u = 0.165 and C2u = −0.85 for DNS0,
C1u = 0.20 and C2u = −2.75 for DNS1 and C1u = 0.165 and C2u = −0.25 for DNS2.

difficult to obtain with distinct experimental apparatus or numerical simulations. The
difference between the DNS1 results and the simulation of Stanley et al. (2002) can be
explained by the fact that these authors force the inlet noise spectrum to peak at the
fundamental mode for a hyperbolic tangent profile, whereas we apply a white noise
peaking at small scales to let the fundamental frequency emerge naturally. Thus, our
‘synthetic’ noise yields a longer distance for the coherent structures to appear and
a slower transition towards a turbulent state. The maximum amplitude noise used
by Stanley et al. (2002) is also 10%U1. Stanley & Sarkar (2000) analysed the effect
of the initial values of h/θ0 (11, 20 and 40) and of the amplitude noise (2.5%, 5%
and 10%) in several DNSs of plane jets. They concluded that these initial differences
lead to similar growth rates in the self-similar region and affect only the extent of
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Figure 6. (a) Mean streamwise velocity profiles of the plane jet for several downstream positions.
(b) Mean normal velocity profiles of the plane jet for several downstream positions. Both curves
correspond to simulation DNS2 and are compared with the experimental data from 4, Gutmark
& Wygnansky (1976) and �, Ramprian & Chandrasekhara (1985), as well as the DNS from ×,
Stanley et al. (2002) (at x/h = 10.5).

the potential core region. As can be seen in figure 5, the same is true in the present
simulations. Note that the slopes corresponding to DNS0 and DNS2 (same h/θ0) are
equal to and slightly smaller than the slope corresponding to DNS1 (smaller h/θ0).
This agrees also with the results from Stanley & Sarkar (2000). Therefore, we can
consider that our computations exhibit the correct self-similar behaviour and that the
far field is representative of the fully developed turbulent regime.

The mean streamwise velocity profiles for DNS2 at several downstream locations
are shown in figure 6(a). Self-similarity is observed for x/h > 8, as all the profiles
in 8 < x/h < 11 collapse. The results agree very well with both the previous
DNS and experimental measurements. Figure 6(b) displays the mean normal velocity
profiles for DNS2. Again, good agreement is observed between the present results
and the previous numerical and experimental data. Note that the normal velocity is
very sensitive to the nature of the lateral boundary conditions; figure 6(b) therefore
demonstrates that our lateral boundaries were placed sufficiently far a way and do
not affect the entrainment rate. Note that similar results are obtained with DNS0 and
DNS1, although the self-similar regime is obtained later than in DNS2.

Figure 7(a) shows the streamwise Reynolds stresses profiles for simulation DNS2,
at several downstream locations. Comparing the profiles at x/h = 9, x/h = 10 and
x/h = 11 we can see that the Reynolds stresses are very close to the self-similar state.
Considering the scatter between the experimental data, the present results (DNS2)
agree well with the data available. The same is true of the lateral and spanwise
Reynolds stresses profiles (not shown). The figure 7(b) displays the downstream
evolution of the streamwise Reynolds stresses at the centreline. Notice that the
initial discrepancy between the Reynolds stresses in the present simulations and in
the DNS of Stanley et al. (2002) comes from the fact that we are not prescribing
a ‘deterministic’ forcing in the present case, as discussed above. In agreement with
Stanley & Sarkar (2000) we also note that smaller values of initial h/θ0 (e.g. DNS1) or
inlet noise (e.g. DNS0), while causing a delay in the transition, as compared to DNS2,
are compensated by higher maximum values of the Reynolds stresses. Despite these
differences in the initial conditions, the plateau-value reached in the self-similar regime
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Figure 7. (a) Streamwise Reynolds stresses profiles for simulation DNS2 at several downstream po-
sitions compared with the experimental data from 4, Gutmark & Wygnansky (1976), �, Ramprian
& Chandrasekhara (1985), ©, Thomas & Chu (1989) and the DNS from ×, Stanley et al. (2002) (at
x/h = 10.5). (b) Downstream evolution of the streamwise Reynolds stresses along the centreline for
simulations DNS0, DNS1 and DNS2. The simulations are compared with the experimental data
from 4, Thomas & Chu (1989), ©, Thomas & Prakash (1991) and �, Browne et al. (1983), as well
as the DNS from ×, Stanley et al. (2002).

for DNS0, DNS1 and DNS2 is similar to the values found in previous experimental
and numerical studies. The same trend was observed for the lateral and spanwise
Reynolds stresses (not shown).

All these validations allow us to consider that our DNS provides an accurate
representation of the large-scale dynamics in the self-similar region of spatially
developing plane jets.

4.3. Small scales behaviour

To assess the accuracy of the present simulations, two banks made up of several
instantaneous fields from DNS1 and DNS2 were used to compute the Kolmogorov
micro-scale, Taylor micro-scales and the Reynolds number based on the Taylor micro-
scale. The Taylor micro-scales vary between λx/h ≈ 0.1 and λz/h ≈ 0.07. This means
that at least 2 to 3 grid points are used to represent the Taylor micro-scale (λ ≈ 2 to
3∆x). This shows that, compared to the mesh size, both the Kolmogorov and Taylor
micro-scales are well within the accepted range for an accurate DNS (see e.g. Jiménez
et al. 1993; Moin & Mahesh 1998). Furthermore, the Reynolds number based on the
streamwise Taylor micro-scale is about Reλx ≈ 100, for both simulations. Thus, at
least from x/h > 10, the simulations DNS1 and DNS2 have a considerable level of
small-scale turbulence and can be considered to represent fully developed turbulent
(non-transitional) flows.

As an extra test for proper accuracy, we next consider the frequency spectrum of
the streamwise velocity component (see figure 8). These time spectra were computed
from streamwise velocity signals taken from the simulations DNS1 and DNS2,
in the self-similar region (x/h = 10). This was made with time series composed of
8000/7500 samples for DNS1/DNS2. For these computations each signal was divided
into 5 equally sized time series subsets (1600/1500 samples each). A one-dimensional
subspectrum was then calculated for each one of these subsets and the final spectrum
was obtained through an ensemble averaging over all the subspectra. This procedure
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Figure 8. Temporal spectra of the streamwise velocity at the far field of the plane jet for simulations
DNS1 and DNS2. (a) Streamwise velocity spectrum for DNS1 at x/h = 10. (b) Streamwise velocity
spectrum for DNS2 at x/h = 10.

was adopted to improve the quality of the statistics for an accurate measure of
the spectral slope of the inertial region (if present). The frequency spectra exhibit a
well-defined slope close to − 5

3
, which is the signature of an inertial range extending

over about one decade. Note that in DNS1, the slope seems to be slightly smaller
than − 5

3
at x/h = 10 (see figure 8a). This may be explained by the slightly later

transition to turbulence observed in DNS1 compared to DNS2. The inertial ranges
are followed by a smooth decrease of the energy at high frequencies, which indicates
a well-resolved dissipative range. The high-frequency regions do not show any sign
of energy accumulation except for the very end of the spectrum where the signal is
of comparable intensity to the numerical noise. As pointed out by Moin & Mahesh
(1998) ‘the requirement to obtain reliable first and second order statistics is that the
resolution be fine enough to accurately capture most of the dissipation’; figure 8 leads
us to consider that this requirement is indeed met in the present simulations.

As far as frequencies are concerned, we have also checked that the characteristic
frequencies of the plane jet are recovered. Although it is difficult to extract the
characteristic frequency of the initial instability of the jet shear-layer owing to the
high-amplitude of the inlet noise, we may deduce it from the separation length
between consecutive Kelvin–Helmholtz billows. For a plane jet, the expected shear-
layer instability is associated with a Strouhal number (Monkewitz & Huerre 1982),

Ssl =
fslθ

Uc

= 0.033, (4.4)

where Uc = 0.5(U1 +U2) is the convection velocity, and fsl is the frequency associated
with the shear-layer mode. In the present cases, with h/θ0 equal to 30 (DNS0 and
DNS2) and 20 (DNS1) this corresponds to an instability length scale of λsl = θ/Ssl
equal to 1.0h, 1.515h and 1.0h for DNS0, DNS1 and DNS2, respectively. Figure 1(a)
shows that the primary Kelvin–Helmholtz vortices from DNS0 are located at x/h ≈
3.2 and x/h ≈ 4.2 (see upper shear layer), so that their initial separation is λ ≈ 1.0h,
in good correspondence with the theoretical value for the primary instability of the jet
shear-layer. For DNS1, the initial separation of the two primary rollers is λ ≈ 1.5h as
shown in figure 1(b) (the primary Kelvin–Helmholtz vortices emerge at x/h ≈ 3.5 and
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x/h ≈ 5.0 at the upper shear-layer). For DNS2, the faster transition process makes
the identification of the primary rollers harder, but we can still see that their average
separation decreases when compared with the other simulations. The occurrence of
merging between the initial Kelvin–Helmholtz vortices makes the situations even
more difficult, but a close look at the upper shear layer for DNS2 (see figure 2) shows
also the presence of primary Kelvin–Helmholtz vortices at x/h ≈ 3.0 and x/h ≈ 4.0
corresponding to an initial separation equal to λ ≈ 1.0h, which agrees also with the
theoretically predicted values.

Experimental works on plane jets by Thomas & Goldschmidt (1986), Thomas &
Chu (1989), Thomas & Prakash (1991) pointed out the existence of a preferential
mode in the self-similar region of the plane jet corresponding to a Strouhal number of,

Ssim =
fsimδU

∆U
= 0.11. (4.5)

Frequency spectra (not shown), computed from the streamwise velocity time series
in the far field of the turbulent plane jet for DNS1, show a well-defined peak close
to fsimδU/∆U ≈ 0.1 at x/h = 11, in agreement with the experimental observations.
Similar observation could be made for DNS2.

5. Local grid/subgrid-scale interactions
5.1. Statistical tools and sample data set

In this section, the effect of coherent structures upon grid/subgrid-scale interactions
will be analysed in the far field of the turbulent plane jet. This will be achieved
through a statistical and topological analysis of terms from (2.7) and (2.8), which, as
already stressed, are valid locally and instantaneously. As shown in the last section,
both the DNS1 and DNS2 simulations are representative of the far-field self-similar
region of the turbulent plane jet, but this state is reached earlier in DNS2 than
DNS1 owing to the difference in the initial h/θ. To show that the conclusions from
the following analysis are independent of this fact, we will make full use of both
simulations. Occasionally, we will be interested in the transitional region also, and in
this case the simulation DNS0 will be used instead.

For the self-similar region, all the statistical analysis to follow was carried out on
data sets made with instantaneous fields from simulations DNS1 and DNS2. The
number of instantaneous fields was equal to 373 and 298 for simulations DNS1 and
DNS2, respectively. For each instantaneous field, the data was taken from a sampling
region placed in the self-similar region of the plane jet (x/h ≈ 10). This consisted of
10 lines along the spanwise direction (72/80 points each for DNS1/DNS2) both at
the upper and lower shear layers. The 10 lines are placed at coordinates x/h = 9.5,
x/h = 10, x/h = 10.5 and y/h = +0.8 ± 0.04 and y/h = −0.8 ± 0.04. The total
time interval for the instantaneous fields allows for about 5 and 4 Kelvin–Helmholtz
vortices to cross the computational domain, both at the upper and lower shear layers
for simulations DNS1 and DNS2, respectively. Therefore, the number of samples for
each point of the normal (y) profiles is equal to 268 560/238 400 for DNS1/DNS2.

This statistical data set was used to compute the root mean square (r.m.s.), skewness
and flatness of each term T , from (2.7) and (2.8). Using the classical Reynolds
decomposition of each term T = 〈T 〉+ T ′, the r.m.s. was made non-dimensional by
the reference velocity U1, and the length scale h,

rms =
〈T ′2〉

[U3
1/h]

, (5.1)
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VI
III IV V Diffusion VII

II Diffusion Viscous Viscous velocity–SGS GS/SGS
Term Advection pressure–velocity diffusion dissipation stresses transfer

r.m.s. ×10+2 +47.0 +19.9 +0.037 +0.0041 +2.37 +0.296
Skewness −0.88 −0.28 −0.636 −4.00 −0.06 −4.86
Flatness +14.7 +14.1 +26.7 +39.5 +27.4 +108.0

Table 3. Short description of terms from (2.7) in the far field of the turbulent plane jet for simulation
DNS1. The root mean square, skewness and flatness were computed with (5.1), (5.2) and (5.3). The
statistics were computed using the instantaneous fields from the DNS1 data bank at x/h = 10 and
y/h = 0.8. DNS2 leads to similar results.

XIV
X XI XII XIII Diffusion XV

IX Turbulent Diffusion Viscous Viscous velocity–SGS GS/SGS
Term Advection transport pressure–velocity diffusion dissipation stresses transfer

r.m.s. ×10+2 +2.50 +2.20 +0.0017 +0.0031 +0.034 +2.37 +0.296
Skewness −0.25 −0.27 +1.40 +2.44 −2.82 +0.06 +4.86
Flatness +26.7 +22.1 +36.5 +32.0 +19.9 +27.4 +108.0

Table 4. Short description of terms from (2.8) in the far field of the turbulent plane jet.
See caption of table 3 for details.

and the skewness and flatness were made non-dimensional by the variance,

S =
〈T ′3〉

[〈T ′2〉1/2]3
, (5.2)

F =
〈T ′4〉

[〈T ′2〉1/2]4
. (5.3)

The r.m.s., skewness and flatness for the terms from (2.7) and (2.8) are given in
tables 3 and 4, respectively. In addition to this, probability density functions (PDFs),
joint PDFs and correlation coefficients were computed with several variables. The
correlation coefficient between two variables u and v is given by,

C(u,v) =
〈u′v′〉

[〈u′2〉〈v′2〉]1/2
. (5.4)

All the computed correlations are given in table 5. To give an idea of the quality
of the sample data, figure 9(a) shows PDFs of the normal velocity (v), the stream-
wise vorticity (ωx), and the pressure (p), from the data set based on DNS1. The
velocity exhibits a slight sub-Gaussian behaviour, the vorticity is close to exponen-
tial and the pressure is asymmetric, having a negative side with higher probability
values than the positive side. Very similar features were previously found in homo-
geneous isotropic turbulence (Métais & Herring 1989; Vincent & Meneguzzi 1991;
Métais & Lesieur 1992). Figure 9(b) displays a joint PDF of pressure (p) and
vorticity norm (Ω). As expected (see Lesieur 1997), higher values of vorticity are
correlated with negative values of pressure owing to the presence of vortical struc-
tures. The correlation coefficient is C(p,Ω) = −0.51. Similar results are recovered with
DNS2.
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Variables Correlation coefficient Variables Correlation coefficient

(p, Ω) −0.51 (|S |, V II) −0.44
(Ω, u<i u

<
i ) +0.15 (VI,X) +0.94

(τii, u
<
i u

<
i ) +0.22 (IX,X) −0.43

(Ω, τii) +0.74 (II, X) −0.24
(II, III) +0.61 (Ω,XII) +0.47
(Ω,V ) −0.58 (Ω,XIII) −0.65
(VI, V II) −0.24 (VII, XIII) +0.39
(τii, XIII) −0.81 (VIII + IX,XIII +XV ) +0.57

(u<i u
<
i , V II) −0.1

Table 5. The correlation coefficients. The computations were made with (5.4).
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Figure 9. Several probability density functions (PDF) and joint PDFs from the DNS1 simulation.
The data sample is detailed in the text. For each PDF or joint PDF computation, all variables were
removed from their mean values and non-dimensionalized by their respective variances. (a) PDFs
of the normal velocity (v), the streamwise vorticity (ωx) and the pressure (p). A Gaussian curve is
also shown for comparison. (b) Joint PDF of vorticity modulus (Ω) and pressure (p). For all the
joint PDFs, 15, logarithmically placed isocontours were used. The isocontours are equally spaced
in the range 2× 10−3 to 1.

Some of the local analysis in the next section, will be carried out also with
instantaneous fields exhibiting typical features of the far-field turbulent plane jet.
Details of the chosen fields from DNS1 and DNS2 were already shown in figures 3
and 4. Piomelli, Yu & Adrian (1996) used conditional averaging to relate vortical
structures from a wall flow with regions of direct/inverse GS/SGS transfer. Unlike
wall-bounded flows where some flow events (sweeps, ejections) occur more or less
randomly in space and time, the vortical structures of plane jets with which this study
is concerned (Kelvin–Helmholtz and streamwise vortices), have relatively long life
times. This makes the use of instantaneous fields (instead of conditionally averaged)
suitable for this kind of analysis. However, it must be stressed that movies of
the analysed quantities were made over sufficiently long time intervals, from which
these single instantaneous fields were taken, and lead to the same (qualitative and
quantitative) conclusions.
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Figure 10. (a) Temporal evolution of the grid scale and subgrid-scale kinetic energies for the
DNS1 simulation at the self-similar region. The kinetic energies were integrated along the spanwise
direction. (b) Profiles of energy fraction content at the subgrid-scales for the two different filter
widths used in this work in the self-similar (x/h = 10) region of simulation DNS1.

5.2. Grid scale and subgrid-scale kinetic energy: topology and statistics

Before separating GS and SGS, we have to show where the several filters stand
concerning energy removal from the GS. This can be analysed first in figure 10(a)
which serves also to complete the characterization of the DNS1 data bank. The figure
displays the temporal evolution of the grid scale and subgrid-scale kinetic energies,
integrated along the spanwise direction, using the instantaneous fields used to make
the DNS1 data bank. The data were taken from the self-similar region. This figure
allows us to observe the statistical steadiness of the DNS1 sample data, both at the
large- and small-scales level. The figure shows also that using the two filter widths,
the subgrid-scale kinetic energy is much smaller than the grid scale kinetic energy,
as is supposed to be the case in a well-resolved LES, which the present work aims
at describing. To further clarify this point, figure 10(b) displays the ratio of SGS to
GS kinetic energy. These profiles were also calculated in the self-similar region of the
plane jet for DNS1. DNS2 leads to similar results. The first filter width corresponds
to ∆1 = 15η. Using this filter, we have around 7% of the energy at the small scales
which is representative of a very fine LES. The second filter width is ∆2 = 25η, and
leads to around 16% of the energy at the small-scales level which is representative
of a typically good LES (Piomelli et al. 1996). At this point, it may be interesting
to see where the two filters are placed in the kinetic energy spectrum. A rough idea
can be given in figure 8. The figure shows that the two filters are placed in the
inertial range region, arguably, the correct place in an LES. Note that the two filter
frequencies were computed using Taylor’s frozen flow hypothesis, which is not really
applicable here because of the very high level of turbulence present at x/h = 10.
Therefore, interpretation of the real location of the filter frequencies in figure 8 has
to be taken with some caution. Finally, it was seen throughout this work that all the
topological and statistical results showed only small differences when changing filters
(∆1 or ∆2). Moreover, both filter widths are within values commonly used in this type
of study (Akhavan et al. 2000). Therefore, both filters will be used throughout this
work.
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Figure 11. Isosurfaces of low pressure p (white grey) in the upper shear layer (y/h > 0) and
subgrid-scale kinetic energy τii (dark grey) for the two filter widths in simulation DNS1. Top view.
(a) Filter width ∆1 = 15η. The threshold for τii is +0.2U2

1 and τii varies between τiimin = 0.U2
1 and

τiimax = 0.241U2
1 . (b) Filter width ∆2 = 25η. The threshold for τii is +0.3U2

1 and τii varies between
τiimin = 0.U2

1 and τiimax = 0.279U2
1 . Both figures report the same instant which also corresponds to

the instant of figure 3. The threshold for the pressure is the same as in figure 3. Note that the
pressure was made transparent (70% opacity) to help visualizations.

Figure 11 shows isosurfaces of SGS kinetic energy for the two previously defined
filters. We can see clearly that the higher values of the SGS kinetic energy are
concentrated in the centre of the coherent structures. This is apparent from the joint
PDF of vorticity modulus (Ω) and SGS kinetic energy (τii) shown in figure 12 and
by their strong correlation coefficient, C(Ω,τii) = +0.74. Similar spatial structure was
observed recently for the component τ12 of the SGS tensor, in a mixing layer by
Guerts, de Bruin & Sarkar (2000). At first glance, this seems surprising since there is
no clear correlation between the total GS kinetic energy and the coherent structures
of the flow. Observation of the isosurfaces of total (mean and fluctuating) GS kinetic
energy (not shown) shows that the GS kinetic energy peaks are placed in the centre
of the jet (y/h ≈ 0), with no apparent connection with the presence of the vortices.
This lack of correlation is confirmed by the slim correlation coefficient between GS
kinetic energy and the vorticity norm (C(Ω,u<i u

<
i ) = +0.15). When looking into the

averaged values of GS and SGS kinetic energy, the same observation can be made
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Figure 13. (a) Profiles of grid scale kinetic energy for the two filter widths in DNS1 at x/h = 10.
(b) Profiles of subgrid-scale kinetic energy for the two filter widths in DNS1 at x/h = 10.

(see figure 13). Compared to the large scales, there is a very small amount of energy
in the small scales, and wider filters lead to more energy in the SGS and less in the
GS, as expected. However, the shape of the two curves is quite different. Most of the
GS kinetic energy is to be found at the centre of the shear layer whereas in the SGS
its maximum is located in the region of the shear-layer gradients. Thus, it is clear
that in a statistical sense, GS and SGS kinetic energy are also uncorrelated. The same
happens at a local level, as can be seen by the weak correlation coefficient between
these two quantities, C(τii ,u

<
i u

<
i ) = +0.22.

Now, if the SGSs are highly correlated with the large coherent structures, which
are clearly large-scale (GS) events, this means that the small-scale dynamics are being
highly affected by large-scale processes. In what follows, some observations are put
forward in order to shed new light upon this GS/SGS dynamics.
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Figure 14. Profiles of averaged terms from (2.7) for DNS2, at x/h = 10, in the far field of the
plane jet. The filter width is ∆2 = 25η and the averaging was carried out along the homogeneous
direction and the symmetry plane (x, z) and over 298 instantaneous fields from DNS2.

5.3. Coherent structures and large-scale dynamics

A first picture of the GS dynamics can be gained by looking at the profiles of the
averaged terms from (2.7) in the far field of the turbulent plane jet (x/h = 10).
These are shown in figure 14 for simulation DNS2. Here, the averaging consists of a
spatial averaging along the spanwise direction (80 points) and a temporal averaging
using several (298) instantaneous fields so that the resulting profiles are functions of
y/h. In addition to this, averaging is also made along the plane jet symmetry plane
(x, z). A complete convergence of such profiles requires a very long time integration
(Piomelli et al. 1996). Although our statistics are not completely converged, the degree
of convergence is sufficient to show the global trends. Since the flow is statistically
stationary, term I averaged in this way is zero everywhere and therefore is not shown
in the figure.

Figure 14 shows that, in the mean, the terms II (GS kinetic energy advection),
III (GS pressure/velocity interactions), VI (GS/SGS diffusion) and VII (GS/SGS
transfer) are clearly dominant. Conversely, the terms V (GS viscous dissipation) and
IV (GS viscous diffusion) are, on average, negligible. This is what we may expect to
obtain in a well-resolved LES where the effects of molecular viscosity are negligible
as far as the GS dynamics are concerned. Another expected result is that the term
VII (GS/SGS transfer) is found to be quite significant and always negative. With the
sign convention used here, negative values for the term VII (and VI) correspond to a
kinetic energy transfer from GS to SGS (forward scatter), whereas positive values are
associated with a transfer from SGS to GS level (backward scatter). Therefore, in the
mean, the GS/SGS transfer (term VII) corresponds solely to forward scatter. The first
surprise comes from the other term directly related with GS/SGS kinetic energetic
exchanges. Indeed, the averaged term VI (GS/SGS diffusion) displays extrema of the
same order of magnitude as term VII. In virtually all the studies devoted to SGS
modelling, term VI is assumed to be less important than term VII (Piomelli et al.
1996; Akhavan et al. 2000; Meneveau & Katz 2000). It is argued that this term,
being a redistribution term (that integrates to zero in the whole domain), has only
a negligible effect in the GS/SGS interactions. This was shown to be the case in
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near-wall flows (Balaras & Piomelli 1994), but to our knowledge, this has never been
checked before in free shear flows. Figure 14 also displays large variations of term VI
with y/h. Indeed, near the jet centreline, |y/h| < +0.6, on average, term VI contributes
to forward scatter, whereas in the interval 0.6 < |y/h| < 1.8 it contributes to a strong
mean backscatter. One possible explanation could be that, in free shear flows, the
transport terms, which are not inhibited by the presence of a wall, generally play a
more important role than in wall-bounded flows.

We now turn into the analysis of the local behaviour of the various terms from
(2.7). A measure of the local fluctuating intensity of the terms is provided by their
r.m.s. values. These are given in table 3. It can be seen immediately that the local
intensities of terms II and III (rmsII = +47.0 × 10−2 and rmsIII = +19.9 × 10−2)
are much larger than all the other terms. At a second level of importance come
terms VI (rmsVI = +2.37 × 10−2) and VII (rmsVII = +0.296 × 10−2). The fact that
rmsVI � rmsVII shows unambiguously that GS/SGS diffusion (VI) has a greater local
importance than the GS/SGS transfer (VII). This is a somewhat surprising result
which could not be deduced only by examining the averaged profiles. This implies
that local and instantaneous flow events such as coherent structures, for instance, are
likely to have a stronger impact on the GS evolution through GS/SGS diffusion (VI)
rather than through GS/SGS transfer (VII). This has consequences for SGS modelling
analysis; the performance of a given SGS model to describe correctly the local flow
events (e.g. the flow structures) should be evaluated by comparing the modelled and
the real terms VI, and not only the modelled and the real terms VII as is usually done
in a priori tests. Finally, concerning now the terms related to molecular viscosity (IV
and V), we notice that they both have very small r.m.s. values (rmsIV = +0.037×10−2

and rmsV = +0.0041× 10−2). Thus, in the mean as well as locally, the terms IV and
V play a negligible role in the GS dynamics.

Table 3 also provides information regarding the local behaviour of all the terms
of (2.7). The skewness factor S , being a measure of the asymmetry of the probability
density function, shows that most of the terms exhibit similar levels of asymmetry
(e.g. terms II, III and IV with SII = −0.88, SIII = −0.28, SIV = −0.636). It is
interesting to note that these values are close to the skewness of the filtered velocity
gradients found in a high-Reynolds-number wake flow (Cerutti, Meneveau & Knio
2000). However, two terms in particular exhibit much higher skewnesses. These are
terms V (SV = −4.0) and VII (SVII = −4.86). This asymmetry is attributable to the
fact that the term V is always a sink of GS kinetic energy and that forward scatter
dominates over backward scatter for the term VII. The flatness factor F allows us
to measure the departure from Gaussianity and then constitutes an indication of the
intermittent nature of the measured quantity (for a Gaussian distribution F = 3).
The values of F are very high values for the terms related to molecular viscosity
(FIV = +26.7 and FV = +39.5) and also for the term VII (FVII = +108.0). High
intermittency for terms IV and V occurs because viscosity must ‘kill’ the relatively
rare events associated with very high GS velocity gradients. The intermittent nature
of term VII can be more precisely analysed through figure 15. The figure shows the
probability density function of terms VI and VII. We can see that the PDF of term
VI is only slightly asymmetric (SVI = −0.06) and has a moderate intermittent level
(FVI = +27.4) compared to the other terms of the equation. It was checked that most
terms have PDFs of shape very similar to term VI (not shown). It is worth noting
the particular shape of the PDF of term VII with a very different behaviour for
the negative tail associated with the forward scatter (T ′VII < 0) and for the positive
tail representing backscatter (T ′VII > 0). The rapid drop of the backscatter tail for
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removed from their mean values and non-dimensionalized by their variances. The filter width was
∆2 = 25η. The PDFs were computed using the instantaneous fields from the DNS1 data bank at
x/h = 10 and y/h = 0.8. DNS2 leads to similar results.

small and intermediate values of VII and the nearly exponential wings for the largest
values indicate not only that forward scatter is a more frequent event than backward
scatter (as expected), but that backscatter acts as very rare but strong fluctuations,
with the nearly-zero backscatter events being the most likely. Indeed, by comparing
the PDF curves for terms VI and VII, we can say the high value of the intermittency
of term VII comes mainly from its backscatter tail.

We now examine how the various terms of (2.7) relate to the presence of coherent
structures. Let us start with term III accounting for GS pressure–velocity interactions
and which corresponds, as shown above, to one of the most significant terms (behind
II) as far as local values are concerned. An instantaneous picture of the values from
this term is shown in figure 16. The picture shows isosurfaces of low pressure (the
same as in figures 3 and 4) and isosurfaces of negative/positive term III (blue/red).
As before, with the sign convention used here, negative/positive values represent
loss/gain of GS kinetic energy. The first observation, which proves to be common to
the most important terms, is that their higher values are not randomly distributed in
space. For term III, the stronger intensities appear in the vicinity of the flow coherent
vortices. The positive and negative peaks are not located at the centre of the vortices
but ahead and behind (or on top and bottom) of them. Moreover, the peaks of
strong positive values appear close to the strong negative ones, the interface of these
regions being the very centre of a vortical structure. Although this can be seen to
be happening both for the large Kelvin–Helmholtz rollers and for the smaller, more
intense, streamwise vortices, it seems this term is more sensitive to the presence of
the large rollers than to the smaller vortices, as most of its high values are found
primarily near these large structures. It was noticed (not shown) that term II (GS
kinetic energy advection) displays a similar behaviour. This can be seen with the joint
PDF of both terms shown in figure 17(a). The correlation coefficient (see table 5) is
C(II,III) = −0.61. As previously emphasized, the terms II and III were found to be
among the most important as far as mean (averaged) and local (r.m.s.) values are
concerned. Their spatial correlation with the large coherent structures can be easily
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Figure 16. Visualizations of term III – GS diffusion by pressure–velocity interactions (blue/red) and
low pressure (grey) in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond
to the same instant as in figures 3(a) and 4(a), respectively, but the pressure isosurfaces were made
transparent (75% opacity) to help visualizations. The filter width is ∆1 = 15η. (a) Term III in
DNS1. The threshold for term III is the following: blue corresponds to −0.8U3

1/h, red corresponds
to +0.8U3

1/h and term III varies between Tmin = −64.2U3
1/h and Tmax = +22.6U3

1/h. (b) Term III in
DNS2. The threshold for term III is the following: blue corresponds to −0.8U3

1/h, red corresponds
to +0.8U3

1/h and term III varies between Tmin = −33.5U3
1/h and Tmax = +22.8U3

1/h.

understood. Indeed, it is commonly agreed that the large coherent structures are
responsible for most of the transport of total (large- and small-scale) kinetic energy
and this topological analysis showed that terms II and III have most of their activity
near these larger flow vortices (here, the Kelvin–Helmholtz vortices). It is reasonable
to suppose that the GS advection will be enhanced by the local velocity increase
produced by the presence of these large structures. The fact that GS pressure–velocity
interactions increases near the large rollers may be caused by the conjunction of the
high level of small-scale turbulence inside the rollers (see figures 3 and 4) and with
the high-pressure gradient located in their neighbourhood.

We now turn to the spatial localization of terms VI (GS/SGS diffusion) and VII
(GS/SGS transfer), which were shown to be after terms II and III in terms of local
magnitudes. As already stressed, these terms represent the kinetic energy exchanges
between GS and SGS. Figure 18 shows isosurfaces of term VII (red/blue) and positive
Q (same as in figures 3b and 4b). As before, positive/negative isosurfaces of the term
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Figure 17. Several joint probability density functions (PDF) of terms from (2.7). For each joint
PDF computation, all variables were removed from their mean values and non-dimensionalized by
their respective variances. The PDFs were computed using the instantaneous fields from the DNS1
data bank at x/h = 10 and y/h = 0.8. DNS2 leads to similar results. For all the joint PDFs, 15,
logarithmically placed isocontours were used. The isocontours are equally spaced and range from
2× 10−3 to 1. The filter width was ∆2 = 25η. (a) Joint PDF of terms II and III. (b) Joint PDF of
strain rate (|S |) and term VII. (c) Joint PDF of vorticity modulus (Ω) and term V.

are shown in red/blue, which, for this term (as well as for VI), represent backward
and forward scatter, respectively.

The first surprising observation is that VII (GS/SGS transfer) shows no clear sign of
correlation with the coherent structures. This seems to contradict some of the previous
numerical and experimental observations. O’Neil & Meneveau (1997) observed a
strong correlation between the big billows in a Kármán-street of a turbulent wake
and the so-called ‘surrogate’ subgrid-scale dissipation (τ11S

<
11). Horiuti (1996, 1997)

also noted a strong correlation between the coherent structures and what he defined
as the ‘SGS production’ (Pij = (u<i u

<
j )< ∂u<i /∂xj). A possible explanation for this

unexpected result found in our simulation comes from the fact that in the present
case the structures are ‘more random’ and not so ‘nicely periodic’ as in O’Neil &
Meneveau (1997) and Horiuti (1997). Indeed, the present simulation corresponds to a
fully developed turbulent flow configuration whereas some transitional structures may
still be present in the works of O’Neil & Meneveau (1997) and Horiuti (1997). Let us
note also that O’Neil & Meneveau (1997) stressed that the good correlation between
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Figure 18. Visualizations of term VII – GS/SGS transfer or ‘SGS dissipation’ (blue/red) and positive
Q criterion (grey) in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond
to the same instant as in figures 3(b) and 4(b), respectively, but the Q isosurfaces were made
transparent (75% opacity) to help visualizations. The filter width is ∆1 = 15η. (a) Term VII in
DNS1. The threshold for term VII is the following: blue corresponds to −0.05U3

1/h, red corresponds
to +0.015U3

1/h and term VII varies between Tmin = −2.24U3
1/h and Tmax = +0.49U3

1/h. (b) Term
VII in DNS2. The threshold for term VII is the following: blue corresponds to −0.1U3

1/h, red
corresponds to +0.025U3

1/h and term VII varies between Tmin = −1.86U3
1/h and Tmax = +2.11U3

1/h.

τ11S
<
11 and the Kármán billows was seen in a flow region where the structures were

still clearly defined, but they pointed out that further downstream, when coherent
structures cease to be nicely organized, this might not be the case. Horiuti (1996,
1997) explained the good correlation he found between the ‘SGS production’ and the
streamwise vortices by the particular shape of the ‘well defined’ field of background
deformation rate Sij , created by the presence of the streamwise structures. In the
present simulation, the coherent structures are embedded in a much more complex
field of background deformation rate. This can be seen for instance in the joint PDF
of term VII and the deformation rate,

|S | = (
2SijSij

)1/2
, (5.5)

shown in figure 17(b). Although, there is some degree of (anti) correlation between
these two quantities, the correlation coefficient is not very high, C(VII,|S |) = −0.44.
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Note that even in the present simulation, in the transition region where the back-
ground deformation rate is not yet very complex, a good correlation between term VII
and the streamwise structures could also be seen, as in O’Neil & Meneveau (1997)
and Horiuti (1996, 1997). To this end, figure 19 shows term VII in the transition
region for DNS0. The figures show that strong forward scatter (term VII < 0) occurs
preferentially in regions of high local velocity gradients created by the presence of
the streamwise vortices, in agreement with Horiuti (1997).

From this discussion, it seems that although there is a natural tendency for the term
GS/SGS transfer to be correlated with the vortical structures, because its definition
involves the GS rate of deformation tensor S<ij which has a well-defined shape near a
vortex, as the flow evolves into fully developed turbulence, this correlation will tend
to decrease owing to the increasing level of complexity of the background turbulence.

Returning to figure 18, we can see with the positive/negative isosurfaces level, that
there are more numerous regions, and of more intense magnitude, of forward than
backward scatter, in agreement with the PDF of term VII shown above. We note also
that as in Piomelli et al. (1996), the two types of transfer occur in close proximity to
each other and strong backward scatter regions are generally surrounded by regions
of high forward scatter. Note that the three-dimensional distribution of term VII for
simulation DNS0 in the self-similar region gave similar results, which demonstrates
that the above results are independent of the inlet noise amplitude.

As previously discussed, the term VI (GS/SGS diffusion) was shown to have higher
local intensities (r.m.s.) than term VII; it is then expected to play a major role in the
local GS dynamics. Figure 20 shows isosurfaces of negative/positive (blue/red) values
of VI which correspond to local forward/backward scatter (positive Q criterion is
also shown as in figures 3b and 4b). The figure shows that unlike term VII, term
VI is clearly correlated with the presence of the vortical structures. Intense regions
of term VI are located next to the vortex cores (not in their centres). Term VI
seems to be more sensitive to the presence of the streamwise structures than to the
large Kelvin–Helmholtz billows, contrary with what happens with terms II and III.
As shown by the PDF of term VI shown in figure 15, the isosurfaces confirm that
backscatter is of comparable magnitude to forward scatter. It is important to notice
the low level of correlation between terms VI and VII: the correlation coefficient is
only C(VI,V II) = −0.24 (see table 5). This low value shows that GS/SGS transfer and
GS/SGS diffusion are not only quite different physical processes, but also take place
at very different flow locations and thus seem to be participating into very different
physical processes. For example, as seen here, the passage of a coherent structure
does not seem to influence the behaviour of GS/SGS transfer (term VII), but has a
great influence in the GS/SGS diffusion (term VI). Now, the passage of a vortical
structure is an example of a local flow event. Because (i) term VI has greater local
intensities (r.m.s.) than term VII and (ii) term VI has its higher values right next
to the flow vortices (whereas term VII is not correlated with these) it is fair to say
that the evolution of these vortical structures is more affected through term VI than
term VII.

To end this section on GS dynamics some comments are also made about the
spatial localization of the remaining terms (IV, V) of (2.7), which, as shown above, are
negligible both from a global (mean) and local (instantaneous) point of view. The GS
viscous diffusion (term IV) was not found to be correlated with the vortical structures
(not shown). On the other hand, the GS viscous dissipation (term V) exhibits some
correlation with the vortical structures (figure 21). This term always has negative
values as expected, since it represents a sink of GS kinetic energy. It seems this GS
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Figure 19. Visualizations of term VII – GS/SGS transfer or ‘SGS dissipation’ (dark/grey) and
positive Q criterion (white) in the upper shear layer (y/h > 0) in the transition region for DNS0.
The figure shows only the region 3 < x/h < 6 (and 0 < z/h < 3). The positive Q isosurface was made
transparent (75% opacity) to help visualizations. The filter width is ∆1 = 15η. The threshold for Q
is equal to +0.00015(U1/h)

2 and Q varies between Qmin = −311(U1/h)
2 and Qmax = +889(U1/h)

2.
The threshold for term VII is the following: dark corresponds to −0.005U3

1/h, grey corresponds to
+0.005U3

1/h and term VII varies between Tmin = −5.1U3
1/h and Tmax = +2.5U3

1/h. (a) Top view.
(b) Side view.

viscous dissipation occurs mainly inside the vortex cores. This can be explained by
writing the Reynolds averaged Navier–Stokes equations in cylindrical coordinates,
for an isolated vortex in a Galilean reference frame having its origin at the centre
of the vortex core. In the absence of axial velocity gradients, the production term of
kinetic energy is given by (Zeman 1995),

Prθ = −〈v′θv′r〉
(
∂〈vθ〉
∂r
− 〈vθ〉

r

)
. (5.6)

Here, the angle brackets represent averaging made along the tangential direction. θ
and r represent the tangential and radial directions, respectively. Since the tangential
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Figure 20. Visualizations of term VI – GS velocity–SGS stresses interactions (blue/red) and positive
Q criterion (grey) in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond
to the same instant as in figures 3(b) and 4(b), respectively, but the Q isosurfaces were made
transparent (75% opacity) to help visualizations. The filter width is ∆1 = 15η. (a) Term VI in
DNS1. The threshold for term VI is the following: blue corresponds to −0.1U3

1/h, red corresponds
to +0.1U3

1/h and term VI varies between Tmin = −4.1U3
1/h and Tmax = +3.0U3

1/h. (b) Term VI in
DNS2. The threshold for term VI is the following: blue corresponds to −0.15U3

1/h, red corresponds
to +0.15U3

1/h and term VI varies between Tmin = −6.9U3
1/h and Tmax = +2.5U3

1/h.

velocity grows linearly with r, within the vortex core region,

〈vθ〉 ∝ r, (5.7)

it follows that there is no turbulent production. Moreover, the local Reynolds number
in the vortex core region is always quite low, owing to the zero tangential velocity
at the centre of the vortex. This implies that all turbulence existing in the core
region of a circular vortex with no axial velocity gradients must come from the
surrounding turbulent field that is wrapped into it. Therefore, the core of the vortices
is a region of potential strong viscous dissipation. This agrees with what has been
seen numerically and experimentally for the total (large and small scales) kinetic
energy viscous dissipation (Kawahara et al. 2000). The degree of correlation between
term V and the vorticity norm can be seen in their joint PDF shown in figure 17(c).
The correlation coefficient between the vorticity modulus and term V is quite high,
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Figure 21. Visualizations of term V – GS viscous dissipation (dark) and positive Q criterion (grey)
in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond to the same instant
as in figures 3(b) and 4(b), respectively, but the Q isosurfaces were made transparent (75% opacity)
to help visualizations. The filter width is ∆1 = 15η. (a) Term V in DNS1. The threshold for term
V is the following: dark corresponds to −0.025U3

1/h and term V varies between Tmin = −4.48U3
1/h

and Tmax = 0. (b) Term V in DNS2. The threshold for term V is the following: dark corresponds
to −0.035U3

1/h and term V varies between Tmin = −4.6U3
1/h and Tmax = 0.

C(Ω,V ) = −0.58. Note, however, that the GS viscous dissipation is taking place in other
regions. Moffatt, Kida & Ohkitani (1994) showed that part of the total kinetic energy
viscous dissipation occurs also in the region of high velocity gradients, nearby the
vortical structures. A closer look into our results shows the same trend. Therefore,
the GS viscous dissipation (term V) occurs mainly at the centre but also in the region
just outside the vortex cores.

5.4. Coherent structures and small-scale dynamics

The various terms of (2.8) will be now analysed. The averaged profiles of all the
terms (except term VIII whose averaged profile is zero) computed in the far field of
the turbulent jet are shown in figure 22. The averaging procedure is identical to that
applied to obtain figure 14. As expected in an energy cascade process, we verify the
mean (global) equilibrium assumption, which states that all the kinetic energy arriving
at the SGS due to the GS/SGS transfer (term XV – symmetric of term VII) has to
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Figure 22. Profiles of averaged terms from (2.8) for DNS2, at x/h = 10, in the far field of the
plane jet. The filter width is ∆2 = 25η and the averaging was carried out along the homogeneous
direction and the symmetry plane (x, z) and over 298 instantaneous fields from DNS2.

be dissipated by the viscous SGS dissipation (term XIII). The second observation
concerns the terms XIV (GS/SGS diffusion – symmetric of term VI) and X (SGS
turbulent diffusion). These two terms are in almost perfect statistical (and local – as
will be seen later) equilibrium. This equilibrium was already observed by Balaras &
Piomelli (1994) in a wall flow. It is worth noticing that it also holds in a free shear
layer, for which unlike the wall-layer region in a wall flow, there is no statistical
equilibrium between production and dissipation of (total) kinetic energy (Tennekes
& Lumley 1972). The last group of importance is constituted by the terms IX (SGS
advection), XI (SGS pressure–velocity interactions) and XII (SGS viscous diffusion).
Term IX seems to be transferring SGS kinetic energy from |y/h| ≈ 0.8 into the centre
of the shear layer (|y/h| ≈ 0). Even if in the mean, term IX has some importance in
the interval |y/h| < 0.8, this last group of terms can be considered to be negligible
for the dynamics of the mean SGS.

We now turn to the r.m.s., skewness and flatness of the various terms (summarized
in table 4). As far as fluctuations are concerned, the most intense terms are IX
(rmsIX = 2.50 × 10−2), X (rmsX = 2.20 × 10−2) and XIV (rmsXIV = 2.37 × 10−2).
The high local magnitude (r.m.s.) of the term IX (SGS advection) is surprising
since this term is almost negligible in the mean. This indicates that the local SGS
dynamics is ruled by different mechanisms from the global (mean) dynamics. This is
confirmed by the r.m.s. values of the terms XV and XIII; although these two terms
dominate the mean profiles, their r.m.s. values are low with rmsXV = 0.296 × 10−2

and rmsXIII = 0.034× 10−2. The r.m.s. values show that the remaining two terms, XI
(SGS pressure–velocity interactions) and XII (SGS viscous difussion) are negligible
for the local SGS dynamics. The skewness factor of all the terms shows that their
distribution is slightly asymmetric, except for the terms XIII and XV. This is expected
since term XV averages into a high positive value, owing to the mean forward
scatter, and term XIII into a mean negative value because it constitutes a sink of
SGS kinetic energy. The flatness factor shows that all terms exhibit about the same
level of intermittency except terms XV and XI. The intermittent nature of term
XV was already discussed when dealing with its symmetric (VII) in (2.7). The fact
that FXV � FXIII can be easily understood; the sink term XIII is always negative
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whereas the XV widely oscillates between positive (backscatter) and negative (forward
scatter) values around a (negative) mean value. This clearly indicates the difference
between the way energy arrives at the SGS level and the process by which it is
finally dissipated by viscosity. The flatness suggests that the SGS viscous dissipation
(term XIII), which is much less intermittent than all the other terms, acts as a
background process present everywhere in the flow whereas the GS/SGS transfer
(XV) constitutes a very intermittent process, sensitive to relatively rare flow events.
It may be interesting to notice also that term XI, as happens with all viscous related
terms in (2.7), acts through a highly intermittent processes. A final comment concerns
the terms connected with the GS/SGS exchanges – terms XIV (= −VI) and XV
(= −VII). Both their global (mean) and fluctuating (r.m.s.) values show that they
belong to the most significant terms of the SGS dynamics. This was not the case for
the GS dynamics since they were found to be relatively small compared to the other
terms of (2.7). As expected, the SGS dynamics are therefore mainly commanded by
the processes of receiving energy from the GS (term XV) and dissipating it by viscous
dissipation (term XIII), while also diffusing (term XIV) and advecting this energy
(term IX).

Let us turn now to the spatial localization of the dominant terms for the SGS
dynamics. Visualizations of the spatial distribution of the SGS viscous dissipation
(term XIII) are shown in figure 25. As previously stressed, this term is always negative
since it corresponds to a sink of SGS kinetic energy. It can be seen that the higher
(negative) values are located at the core of the flow vortices. This can also be verified
with the joint PDF of XIII and the vorticity norm (see figure 23a) and with their
correlation coefficient (C(Ω,XIII) = −0.65). Thus, the vortex core region of the coherent
structures is a sink for both GS and SGS kinetic energy. The often assumed ‘local
equilibrium assumption’ supposes that there is a local balance between the GS/SGS
transfer and the SGS viscous dissipation,

2ν

((
∂ui

∂xk

∂ui

∂xk

)<
− ∂u<i
∂xk

∂u<i
∂xk

)
= 2τikS

<
ik . (5.8)

This hypothesis constitutes the basic assumption of several SGS models such as,
for instance, the Smagorinsky and the dynamic Smagorinsky models. As was seen
above, and as expected, terms XV and XIII are in statistical equilibrium. However, the
comparison of their spatial localization shown in figures 18 (term VII = −XV) and 25
(term XIII) clearly reveals that this equilibrium is not verified locally. The same was
observed (not shown) for simulation DNS0 in the self-similar region, which shows
that this lack of equilibrium is independent of the inlet noise amplitude. The SGS
viscous dissipation acts within the core of the vortices, whereas the GS/SGS transfer
takes place almost randomly in space and can be an energy source (forward-scatter)
or an energy sink (backward-scatter) in (2.8). Thus, the energy transmitted to the SGS
at a given location, is not going to be dissipated by molecular viscosity at that same
location. The joint PDF of both terms is shown in figure 23(b). Their correlation
coefficient is only C(VII,XIII) = 0.39. Although there is some correlation between the
terms, its relatively low level confirms the failure of the local equilibrium assumption.
A possible explanation comes from the unexpected high local intensities (r.m.s.) of
the term IX (SGS kinetic energy advection). A very high local SGS kinetic energy
advection will transport energy received from the GS to another location before the
viscosity has time to act. This hypothesis will be analysed below when discussing
term IX.
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Figure 23. Several joint probability density functions (PDF) of terms from (2.7) and (2.8). For each
joint PDF computation, all variables were removed from their mean values and non-dimensionalized
by their respective variances. The PDFs were computed using the instantaneous fields from the
DNS1 data bank at x/h = 10 and y/h = 0.8. DNS2 leads to similar results. For all the joint PDFs,
15, logarithmically placed isocontours were used. The isocontours are equally spaced and range
from 2 × 10−3 to 1. The filter width was ∆2 = 25η. (a) Joint PDF of vorticity modulus and term
XIII. (b) Joint PDF of terms VII and XIII. (c) Joint PDF of terms VI (= −XIV) and X. (d ) Joint
PDF of terms VIII + IX and XIII + XV.

Let us now turn in the SGS turbulent transport (term X). Visualizations of term
X (not shown) show that it takes place mainly around the smaller vortices. It has a
strong topological resemblance with term VI (= −XIV). This can be seen in the joint
PDF of both terms shown in figure 23(c), and through their very high correlation
coefficient C(VI,X) = +0.94. Therefore, in (2.8), terms X and XIV are in local and
statistical (seen above) equilibrium. However, it was observed that this balance is not
verified within the transition region of the jet (not shown). Indeed, the small-scales
turbulence has to reach a certain level for the SGS turbulent diffusion to start acting
efficiently. This is important because it means that terms X and XIV, which otherwise
could be neglected since they cancel each other out, have to remain in (2.8) when
dealing with transitional flows.

The topology of term IX (SGS advection) will now be analysed. Visualizations of
this term can be seen in figure 26. The picture clearly shows the existence of a clear
connection between the vortex structures and the regions of high negative/positive
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Figure 24. Joint PDF of subgrid-scale kinetic energy and term XIII from (2.8). For the joint
PDF computation, both variables were removed from their mean values and non-dimensionalized
by their respective variances. The PDF was computed using the instantaneous fields from the
DNS1 data bank at x/h = 10 and y/h = 0.8. DNS2 leads to similar results. For this joint PDF, 15,
logarithmically placed isocontours were used. The isocontours are equally spaced and range from
2× 10−3 to 1. The filter width was ∆2 = 25η.

values of term IX. Notice that significant advection occurs preferentially at the
periphery of the smallest most intense structures (as for term XIV = −VI already
analysed), rather than within the large rollers (like terms II and III from (2.7)). Note
that these small-scale intense structures can either be streamwise vortices or elongated
vortices embedded within the core of the large rollers (see figures 3b and 4b). To
characterize this correlation of IX with the coherent structures, the joint PDF (or the
correlation coefficient) of this term and the vorticity modulus is not adapted since
strong correlation takes place at the periphery of the vortices and not at their cores.

We now return to the problem of explaining why the ‘local equilibrium assumption’
fails. As stressed above, the very high local values (r.m.s.) of term IX found above, are
a possible explanation to this. This can be demonstrated by considering a simplified
form of the (2.8). From the previous discussion concerning the global and local
intensities of the various terms of this equation, and since terms X and XIV cancel
out (in the far-field region only), a good approximation of (2.8) can be obtained
through,

∂τii

∂t︸︷︷︸
VIII

+
∂(τiiu

<
k )

∂xk︸ ︷︷ ︸
IX

≈ 2ν

((
∂ui

∂xk

∂ui

∂xk

)<
− ∂u<i
∂xk

∂u<i
∂xk

)
︸ ︷︷ ︸

XIII

−2 τikS
<
ik︸ ︷︷ ︸

XV

. (5.9)

In figure 23(d ), the joint PDF of terms VIII + IX and XIII + XV shows there is
a good local correlation between the two sides of the equation. The coefficient is
C(VIII+IX,XIII+XV ) = 0.57. Given that terms XI and XII can be neglected and that
terms X and XIV cancel out, this shows unambiguously that (5.9) is a good local
approximation to the local SGS dynamics. This demonstrates that it is mainly SGS
advection (term IX) and eventually local temporal variation of the SGS kinetic energy
(term VIII) that compensates for the lack of local equilibrium between terms XIII
and XV. This agrees with the findings of Borue & Orzag (1998), and illustrates one
of the main difficulties of SGS modelling. It would be interesting to investigate the
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Figure 25. Visualizations of term XIII – SGS viscous dissipation (dark) and positive Q criterion
(white grey) in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond to the
same instant as in figures 3(b) and 4(b), respectively, but the Q isosurfaces were made transparent
(75% opacity) to help visualizations. The filter width is ∆1 = 15η. (a) Term XIII in DNS1. The
threshold for term XIII is the following: dark corresponds to −0.0175U3

1/h and term XIII varies
between Tmin = −0.45U3

1/h and Tmax = 0. (b) Term XIII in DNS2. The threshold for term XIII is
the following: dark corresponds to −0.04U3

1/h and term XIII varies between Tmin = −0.5U3
1/h and

Tmax = 0.

consequences of this (wrong) ‘local equilibrium assumption’ on the vortical structures
resulting from Smagorinsky and dynamic Smagorinsky LES computations.

At this point, it is interesting to quote a remark made by a referee. For the SGS
models that do not use the ‘local equilibrium assumption’, an equation for the subgrid-
scale kinetic energy τii transport is used instead. In general, the equation takes the
form (Meneveau & O’Neil 1994),

∂τii

∂t
+
∂(τiiu

<
k )

∂xk
= −2τikS

<
ik + εxiii +

∂Qk

∂xk
, (5.10)

where Qk represents the flux of τii caused by the turbulence and εxiii represents the
modelled viscous subgrid-scale kinetic energy dissipation. This term is supposed to
model the effects described by term XIII in (2.8). This term is generally assumed to
be proportional to the subgrid-scale kinetic energy,

εxiii ∝ τ
3/2
ii . (5.11)
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0

1

2

3

x/h
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

z
h

(b)

0

1

2

3
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

z
h

(a)

Figure 26. Visualizations of term IX – SGS kinetic energy advection (blue/red) and positive Q
criterion (grey) in the upper shear layer (top view) for DNS1 and DNS2. The figures correspond
to the same instant as in figures 3(b) and 4(b), respectively, but the Q isosurfaces were made
transparent (75% opacity) to help visualizations. The filter width is ∆1 = 15η. (a) Term IX in
DNS1. The threshold for term IX is the following: blue corresponds to −0.1U3

1/h, red corresponds
to +0.1U3

1/h and term IX varies between Tmin = −4.24U3
1/h and Tmax = +4.57U3

1/h. (b) Term IX in
DNS2. The threshold for term IX is the following: blue corresponds to −0.175U3

1/h, red corresponds
to +0.175U3

1/h and term VII varies between Tmin = −3.9U3
1/h and Tmax = +3.7U3

1/h.

Using the data bank from DNS1 we found that the correlation between the subgrid-
scale kinetic energy and the real term XIII is C(τii ,XIII) = −0.81 (see their joint PDF
in figure 24). Meneveau & O’Neil (1994) found it to be 0.6. As remarked by a referee,
the fact that these values are higher than those assuming local equilibrium is an
encouraging result for models based on τii transport equations.

We now give a final note on terms XI (SGS pressure–velocity interactions) and XII
(SGS viscous diffusion) which, as stated above, are negligible both for the mean and
local SGS dynamics. Term XI, like the analogous term (III) of (2.7), exists mainly
around the larger flow structures, but now the peaks of negative value are centred at
the vortex cores which are surrounded by a region of high positive value (not shown).
Next, term (XII) accounts for the viscous SGS diffusion and appears in part at the
centre of the vortices (not shown), as indicated by the correlation coefficient between
vorticity modulus and term XII which is C(Ω,XII) = 0.47.
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Relevance High Medium Negligible

Equation (2.7) II, III VI, VII IV, V
Equation (2.8) IX, X, XIV XV, XIII XI, XII

Table 6. Relevance of the several terms to (2.7) and (2.8). The criteria are based on the global
(mean) and local (instantaneous) values of the terms compared to the other terms in the same
equation. See text for details.

5.5. Overview of interscale interactions: relevant terms and topological groups

To summarize, a general overview is now given, concerning the most relevant terms
and the topological groups for the GS and SGS kinetic energy dynamics in the
turbulent plane jet.

Concerning the relevance (in terms of mean and local intensities) of the terms
for the GS transport equation, (2.7), the most important terms are the GS advection
(term II) and the GS pressure/velocity interactions (term III). Then come the GS/SGS
diffusion (term VI) and the GS/SGS transfer (term VII). GS viscous diffusion and
dissipation (terms IV and V) are negligible for the GS dynamics. For (2.8), the
most important terms are SGS advection (term IX), SGS turbulent transport (term
X), and GS/SGS diffusion (term XIV). In the far-field region (but not in the early
stages of transition), terms X and XIV cancel out, and therefore the SGS advection
(term IX) becomes the dominant term. At a second level of importance come the
GS/SGS transfer (term XV) and SGS viscous dissipation (term XIII). Both SGS
pressure/velocity interactions and SGS viscous diffusion (terms XI and XII) are
negligible for the SGS dynamics in the far field of the turbulent plane jet. Table 6
summarizes these observations.

Our topological study revealed that the spatial localization of most of the terms of
(2.7) and (2.8) is correlated with the various types of coherent structures, large Kelvin–
Helmholtz vortices or smaller-scale elongated vortices (streamwise or in the Kelvin–
Helmholtz core). It was seen above that both term IX and term X (≈ XIV = −VI)
appear mainly along the sides of the stronger smaller-scale vortices. It is therefore
interesting to know how these two terms correlate. The terms are (anti) correlated
as can be seen from their correlation coefficient which is C(IX,X) = −0.43. Therefore,
terms VI (= −XIV), IX and X seem to form a topological group, for which the
main activity takes place around the smallest most intense vortices. The other group,
associated with the periphery of the big rollers is formed by terms II and III (correlated
with C(II,III) = +0.61). To check out that these two groups are really distinct, we have
computed their mutual correlation coefficient; for instance, we find C(II,X) = −0.24.
This clearly shows that the two topological groups, (II, III) and (VI = −XIV, IX, X)
are separated. A third group is formed by the GS and SGS viscous dissipation (V,
XIII) which are located at the core of the coherent vortices. Finally, no correlation
exists between terms IV and VII (= −XV) and the presence of the coherent structures
and neither terms XI or XII exhibit any correlation with each other or with other
groups of more important terms i.e. group (II, III) or group (VI = −XIV, IX, X). The
classification of the various terms into their topological groups is shown in table 7.

6. Conclusions
The main goal of this work was to understand how the GS/SGS interactions

are affected by the presence of the vortical structures. This was performed by the
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Topology A B C D E
group

Equation (2.7) II, III VI V IV, VII
Equation (2.8) IX, X, XIV XI, XIII XII XV

Table 7. Topology of terms from (2.7) and (2.8). Group A: higher values located around the
(mainly large Kelvin–Helmholtz) vortex cores; group B: higher values located around the (mainly
streamwise) vortex cores; group C: higher values located at the vortex cores; group D: negative peak
at vortex cores and positive region around vortex cores. group E: no strong correlation observed
with the presence of the coherent structures. Note that terms XIV and XV are the symmetric of
terms VI and VII, respectively, and are therefore represented twice in the table.

application of a box filter to a plane-jet direct numerical simulation. The coherent
structures, which were considered were the Kelvin–Helmholtz vortices and the longitu-
dinal vortices which constitute the characteristic shear-flow structures associated with
the energy containing and inertial range regions. The analysis of several one-point
statistics, including PDFs, joint PDFs and the visualization of several instantaneous
flow events allowed us to draw a clear picture of the role played by the coherent
vortices in the complex GS/SGS interactions.

Even in the far field of an highly turbulent plane jet, most of the interactions between
GS and SGS, either by diffusion or source terms, take place within or next to the cores
of the flow vortical structures, and not randomly distributed in space. Therefore, the
most important GS/SGS interactions are highly influenced by these local flow events.
This agrees with the fact that most of the GS/SGS interactions are local (Domaradzki
et al. 1993). GS kinetic energy advection (term II) and diffusion by GS pressure–
velocity interactions (term III) are the most important terms for the evolution of the
GS. Surprisingly, GS/SGS transfer (term VII = −XV) is not very well correlated
with the far-field vortical structures in the turbulent plane jet. Moreover, its local and
instantaneous values are one order of magnitude smaller than diffusion by GS/SGS
diffusion (term VI = −XIV). This term turns out to play a major role in the GS and
SGS dynamics. Therefore, its accurate modelling may be of primary importance in an
LES aiming at a correct reproduction of the flow topology (vortical structures). We
have separated the various terms into different categories depending on whether these
occur mainly at the periphery of the large Kelvin–Helmholtz rollers, at the periphery
of the smaller vortices or within the core of the coherent vortices. The last category is
constituted by the terms which do not exhibit any clear correlation with the presence
of the coherent structures. Roughly, three main categories appear: first, GS advection
(term II) and the GS pressure/velocity interactions (term III) occur mainly next to
the large Kelvin–Helmholtz rollers (group A). Secondly, the most intense values of
SGS advection (term IX) and GS/SGS diffusion (term VI = −XIV) and turbulent
transport (term X) occur around the smaller vortices (group B). Thirdly, the GS and
SGS viscous dissipation (terms V and XIII) take place at the core of the coherent
vortices (group C). Finally, it was shown that the ‘local equilibrium’ assumption is
valid globally but not locally. The reason for this behaviour was shown to be the high
local values of the SGS kinetic energy advection. This significant SGS advection, even
at very small scales, illustrates the difficulties of SGS modelling. However, for SGS
models based upon an SGS kinetic energy transport equation (Fureby et al. 1997;
Davidson 1998), the present results show that in the far field of the plane jet, SGS
diffusion is exactly balanced by the SGS turbulent transport. Therefore, these two
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terms can be dropped out of the transport equation. The most important terms are
then the SGS advection, SGS dissipation and SGS viscous dissipation. These three
terms overshadow all others in (2.8), and a good SGS model cannot possibly fail in
modelling them.

As a final comment, the present analysis illustrates once more that the dependence
of the small scales on the large ones can be substantial even in a well-resolved LES.
Since the types of vortex with which this study was concerned, appear in many free
shear flows, the conclusions from the present work are extensible to free shear flows in
general. Starting from the present analysis, future works should try to investigate how
the different SGS models influence the shape of various (large-scale and inertial-range)
vortices as well as their life time.

C. B. da S. is supported by the Portuguese government under scholarship PRAXIS
XXI (5726/95). The simulations were carried out on an NEC SX5 machine from the
Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS).
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